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Abstract. An extension of the standard model to the local gauge group SU(3)c ⊗ SU(4)L ⊗ U(1)X as
a three-family model is presented. The model does not contain exotic electric charges and we obtain a
consistent mass spectrum by introducing an anomaly-free discrete Z2 symmetry. The neutral currents
coupled to all neutral vector bosons in the model are studied. By using experimental results from the
CERN LEP, SLAC Linear Collider and atomic parity violation data we constrain the mixing angle between
two of the neutral currents in the model and the mass of the additional neutral gauge bosons to be
−0.0032 ≤ sin θ ≤ 0.0031 and 0.67 TeV ≤ MZ2 ≤ 6.1 TeV at 95% C.L., respectively.

1 Introduction

The standard model (SM), based on the local gauge group
SU(3)c ⊗ SU(2)L ⊗ U(1)Y [1], can be extended in several
different ways: first, by adding new fermion fields (adding
a right-handed neutrino field constitutes its simplest ex-
tension and has profound consequences, as the implemen-
tation of the see-saw mechanism, and the enlarging of the
possible number of local abelian symmetries that can be
gauged simultaneously); second, by augmenting the scalar
sector to more than one Higgs representation, and, third,
by enlarging the local gauge group. In this last direction
SU(4)L ⊗U(1)X as a flavor group has been considered be-
fore in the literature [2–4] which, among its best features,
provides us with an alternative to the problem of the num-
ber Nf of families, in the sense that anomaly cancellation is
achieved when Nf = Nc = 3, Nc being the number of col-
ors of SU(3)c (also known as QCD). Moreover, this gauge
structure has been used recently in order to implement the
so-called little Higgs mechanism [4].

The analysis of the local gauge structure SU(3)c ⊗
SU(4)L ⊗ U(1)X (hereafter the 3-4-1 group) presented in
the appendix of [3] shows that we may write the most
general electric charge operator for this group as

Q = aT3L +
b√
3

T8L +
c√
6

T15L + XI4, (1)

where a, b and c are free parameters, TiL = λiL/2, with
λiL the Gell-Mann matrices for SU(4)L normalized as
Tr(λiλj) = 2δij , and I4 = Dg(1, 1, 1, 1) is the diagonal
4 × 4 unit matrix. The X values are fixed by anomaly
cancellation of the fermion content in the possible mod-
els and an eventual coefficient for XI4 can be absorbed
in the X hypercharge definition. The free parameters a, b

and c fix the gauge boson structure of the electroweak sec-
tor [SU(4)L ⊗U(1)X ], and also the electroweak charges of
the scalar representations which are fully determined by
the symmetry breaking pattern implemented. In particu-
lar a = 1 gives the usual isospin of the known electroweak
interactions, with b and c remaining as free parameters,
producing an infinite plethora of possible models.

Restricting the particle content of the model to par-
ticles without exotic electric charges and by paying due
attention to anomaly cancellation, a few different models
are generated [3]. In particular, the restriction to ordinary
electric charges, in the fermion, scalar and gauge boson
sectors, allows only for two different cases for the simulta-
neous values of the parameters b and c, namely: b = c = 1
and b = 1, c = −2, which become a convenient classifi-
cation scheme for these types of models. Models in the
first class differ from those in the second one not only in
their fermion content but also in their gauge and scalar
boson sectors. Four of the identified models without exotic
electric charges are three-family models in the sense that
anomalies cancel among the three families of quarks and
leptons in a non-trivial fashion. Two of them are models
for which b = c = 1, and one of them has been analyzed
in [3]. The other two models belong to the class for which
b = 1, c = −2 and one of them, the so-called “Model E”
in the appendix of [3], will be studied in this paper. It is
worth noticing that in the four different models at least
one of the three families is treated differently.

This paper is organized as follows. In the next section
we describe the fermion content of the particular model
we are going to study. In Sect. 3 we introduce the scalar
sector. In Sect. 4 we study the gauge boson sector, paying
special attention to the neutral currents present in the
model and their mixing. In Sect. 5 we analyze the fermion
mass spectrum. In Sect. 6 we use experimental results in
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Table 1. Anomaly-free fermion structure of Model E from [3]

Q1L =




d1

u1

U1

D1




L

dc
1L uc

1L Uc
1L Dc

1L

[
3, 4∗, 1

6

] [
3∗, 1, 1

3

] [
3∗, 1, − 2

3

] [
3∗, 1, − 2

3

] [
3∗, 1, 1

3

]

QjL =




uj

dj

Dj

Uj




L

uc
jL dc

jL Dc
jL Uc

jL

[
3, 4, 1

6

] [
3∗, 1, − 2

3

] [
3∗, 1, 1

3

] [
3∗, 1, 1

3

] [
3∗, 1, − 2

3

]

LαL =




e−
α

νeα

N0
α

E−
α




L

e+
αL E+

αL

[
1, 4∗, − 1

2

]
[1, 1, 1] [1, 1, 1]

order to constrain the mixing angle between two of the
neutral currents in the model and the mass scale of the
new neutral gauge bosons. In the last section we summarize
the model and state our conclusions.

2 The fermion content of the model

Inwhat followswe assume that the electroweak gauge group
is SU(4)L ⊗ U(1)X which contains SU(2)L ⊗ U(1)Y as a
subgroup. We will consider the case of a non-universal hy-
percharge X in the quark sector, which implies anomaly
cancellation among the three families in a non-trivial fash-
ion.

Here we are interested in studying the phenomenology
of three-family models without exotic electric charges and
with values b = 1, c = −2 for the parameters in the electric
charge generator in (1). As an example we take Model E
of [3] for which the electric charge operator is given by
Q = T3L + T8L/

√
3 − 2T15L/

√
6 + XI4. This model has

the anomaly-free fermion structure as given in Table 1.
where j = 2, 3 and α = 1, 2, 3 are two- and three-family
indexes, respectively. The numbers in parentheses refer to
the [SU(3)C , SU(4)L, U(1)X ] quantum numbers, respec-
tively. Notice that, if needed, the lepton structure of the
model can be augmented with an undetermined number of
neutral Weyl singlet states N0

L,n ∼ [1, 1, 0], n = 1, 2, . . . ,
without violating our assumptions, neither the anomaly
constraint relations, because singlets with no X charges
are as good as not being present as far as anomaly cancel-
lation is concerned.

3 The scalar sector

Our aim is to break the symmetry, following the pattern

SU(3)c ⊗ SU(4)L ⊗ U(1)X

→ SU(3)c ⊗ SU(3)L ⊗ U(1)X

→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y

→ SU(3)c ⊗ U(1)Q,

where SU(3)c ⊗ SU(3)L ⊗ U(1)X refers to the so-called 3-
3-1 structure introduced in [5]. At the same time we want
to give masses to the fermion fields in the model. With
this in mind we introduce the following four Higgs scalars:
φ1[1, 4∗, −1/2] with a vacuum expectation value (VEV)
aligned in the direction 〈φ1〉 = (0, v, 0, 0)T; φ2[1, 4∗, −1/2]
with a VEV aligned as 〈φ2〉 = (0, 0, V , 0)T; φ3[1, 4, −1/2]
with a VEV aligned in the direction 〈φ3〉 = (v′, 0, 0, 0)T,
and φ4[1, 4, −1/2] with a VEV aligned as 〈φ4〉 = (0, 0, 0,
V ′)T, with the hierarchy V ∼ V ′ >>

√
v2 + v′2 � 174 GeV

(the electroweak breaking scale).

4 The gauge boson sector

In the model there are a total of 24 gauge bosons: One
gauge field Bµ associated with U(1)X , the 8 gluon fields
associated with SU(3)c which remain massless after break-
ing the symmetry, and another 15 gauge fields associated
with SU(4)L which, for b = 1 and c = −2, can be written
as

1
2

λαAµ
α =

1√
2




Dµ
1 W+µ K+µ X0µ

W−µ Dµ
2 K0µ X−µ

K−µ K̄0µ Dµ
3 Y −µ

X̄0µ X+µ Y +µ Dµ
4


 ,

whereDµ
1 = Aµ

3/
√

2+Aµ
8/

√
6+Aµ

15/
√

12,Dµ
2 = −Aµ

3/
√

2+
Aµ

8/
√

6+Aµ
15/

√
12, Dµ

3 = −2Aµ
8/

√
6+Aµ

15/
√

12, and Dµ
4 =

−3Aµ
15/

√
12.

After breaking the symmetry with 〈φ1〉+ 〈φ2〉+ 〈φ3〉+
〈φ4〉 and using for the covariant derivative for 4-plets iDµ =
i∂µ−gλαAµ

α/2−g′XBµ, where g and g′ are the SU(4)L and
U(1)X gauge coupling constants respectively, we get the
following mass terms for the charged gauge bosons: M2

W ± =
g2(v2 + v′2)/2, M2

K± = g2(v′2 + V 2)/2, M2
X± = g2(v2 +

V ′2)/2, M2
Y ± = g2(V 2+V ′2)/2, M2

K0(K̄0) = g2(v2+V 2)/2,
and M2

X0(X̄0) = g2(v′2 + V ′2)/2. Since W± does not mix

with the other charged bosons we have that
√

v2 + v′2 ≈
174 GeV as mentioned in the previous section.

For the four neutral gauge bosons we get mass terms
of the form

M =
g2

2

{
V 2

(
g′Bµ

g
− 2Aµ

8√
3

+
Aµ

15√
6

)2

+ V ′2
(

g′Bµ

g
+

3Aµ
15√
6

)2

+ v′2
(

Aµ
3 +

Aµ
8√
3

+
Aµ

15√
6

− g′Bµ

g

)2

+v2
(

g′Bµ

g
− Aµ

3 +
Aµ

8√
3

+
Aµ

15√
6

)2
}

.



L.A. Sánchez et al.: SU(3)c ⊗ SU(4)L ⊗ U(1)X model for three families 261

M is a 4 × 4 matrix with a zero eigenvalue corresponding
to the photon. Once the photon field has been identified,
there remains a 3 × 3 mass matrix for three neutral gauge
bosons, Zµ, Z

′µ and Z
′′µ. Since we are interested now

in the low energy phenomenology of our model, we can
choose V = V ′ in order to simplify matters. Also, the
mixing between the three neutral gauge bosons can be
further simplified by choosing v′ = v. For this particular
case the field Z ′′µ = 2Aµ

8/
√

6+Aµ
15/

√
3 decouples from the

other two and acquires a squared mass (g2/2)(V 2 + v2).
By diagonalizing the remaining 2 × 2 mass matrix we get
two other physical neutral gauge bosons, which are defined
through the mixing angle θ between Zµ, Z ′

µ:

Zµ
1 = Zµ cos θ + Z ′

µ sin θ ,

Zµ
2 = −Zµ sin θ + Z ′

µ cos θ,

where

tan(2θ) =
S2

W
√

C2W

(1 + S2
W)2 + V 2

v2 C4
W − 2

. (2)

SW = g′/
√

2g′2 + g2 and CW are the sine and cosine of
the electroweak mixing angle, respectively, and C2W =
C2

W − S2
W.

The photon field Aµ and the fields Zµ and Z ′
µ are

given by

Aµ = SWAµ
3

+CW

[
TW√

3

(
Aµ

8 − 2
Aµ

15√
2

)
+ (1 − T 2

W)1/2Bµ

]
,

Zµ = CWAµ
3

−SW

[
TW√

3

(
Aµ

8 − 2
Aµ

15√
2

)
+ (1 − T 2

W)1/2Bµ

]
,

Z ′µ =
1√
3

(1 − T 2
W)1/2

(
Aµ

8 − 2
Aµ

15√
2

)
− TWBµ. (3)

We can also identify the Y hypercharge associated with
the SM abelian gauge boson as

Y µ =
TW√

3

(
Aµ

8 − 2
Aµ

15√
2

)
+ (1 − T 2

W)1/2Bµ. (4)

4.1 Charged currents

The Hamiltonian for the charged currents in the model is
given by

HCC =
g√
2

×

W+

µ




 3∑

j=2

ūaLγµdaL


−ū1Lγµd1L−

(
3∑

α=1

ν̄eαLγµe−
αL

)

+K+
µ




 3∑

j=2

ūaLγµDaL


−Ū1Lγµd1L−

(
3∑

α=1

N̄0
αLγµe−

αL

)

+X+
µ




 3∑

j=2

ŪaLγµdaL


−ū1LγµD1L−

(
3∑

α=1

ν̄eαLγµE−
αL

)

+Y +
µ




 3∑

j=2

ŪaLγµDaL


−Ū1LγµD1L−

(
3∑

α=1

N̄0
αLγµE−

αL

)

+K0
µ




 3∑

j=2

d̄aLγµDaL


−Ū1Lγµu1L−

(
3∑

α=1

N̄0
αLγµνeαL

)

+X0
µ




 3∑

j=2

ūaLγµUaL


−D̄1Lγµd1L−

(
3∑

α=1

Ē−
αLγµe−

αL

)



+h.c.

4.2 Neutral currents

The neutral currents Jµ(EM), Jµ(Z), Jµ(Z ′), and Jµ(Z ′′)
associated with the Hamiltonian

H0 = eAµJµ(EM) + (g/CW)ZµJµ(Z)

+(g′)Z ′µJµ(Z ′) + (g/(2
√

2))Z ′′µJµ(Z ′′),

are

Jµ(EM)

=
2
3


 3∑

j=2

(ūaγµua + ŪaγµUa) + ū1γµu1 + Ū1γµU1




− 1
3


 3∑

j=2

(d̄aγµda + D̄aγµDa) + d̄1γµd1 + D̄1γµD1




−
3∑

α=1

ē−
α γµe−

α −
3∑

α=1

Ē−
α γµE−

α

=
∑

f

qf f̄γµf,

Jµ(Z) = Jµ,L(Z) − S2
WJµ(EM),

Jµ(Z ′) = Jµ,L(Z ′) − TWJµ(EM),
Jµ(Z ′′)

=
3∑

a=2

(ūaLγµuaL + d̄aLγµdaL − D̄aLγµDaL − ŪaLγµUaL)

−d̄1Lγµd1L − ū1Lγµu1L + Ū1LγµU1L + D̄1LγµD1L

+
3∑

α=1

(−ē−
αLγµe−

αL − ν̄eαLγµνeαL

+N̄0
αLγµN0

αL + Ē−
αLγµE−

αL), (5)

where e = gSW = g′CW
√

1 − T 2
W > 0 is the electric

charge, qf is the electric charge of the fermion f in units of
e, and Jµ(EM) is the electromagnetic current. Note from
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Jµ(Z ′′) that, notwithstanding the extra neutral gauge bo-
son, Z ′′

µ does not mix with Zµ or Z ′
µ (for the particular case

V = V ′ and v = v′); it still couples to ordinary fermions.
The left-handed currents are

Jµ,L(Z) =
1
2


 3∑

j=2

(ūaLγµuaL − d̄aLγµdaL)

−(d̄1Lγµd1L − ū1Lγµu1L)

−
3∑

α=1

(ē−
αLγµe−

αL − ν̄eαLγµνeαL)

]

=
∑

f

T4f f̄LγµfL,

Jµ,L(Z ′) = (2TW)−1




3∑
j=2

[
T 2

W(ūaLγµuaL − d̄aLγµdaL)

−D̄aLγµDaL + ŪaLγµUaL
]

−T 2
W(d̄1Lγµd1L − ū1Lγµu1L)

+Ū1LγµU1L − D̄1LγµD1L

+
3∑

α=1

[−T 2
W(ē−

αLγµe−
αL − ν̄αLγµναL)

+N̄0
αLγµN0

αL − Ē−
αLγµE−

αL

]}

=
∑

f

T ′
4f f̄LγµfL, (6)

where T4f = Dg(1/2, −1/2, 0, 0) is the third component of
the weak isospin and T ′

4f = (1/2TW)Dg(T 2
W, −T 2

W, −1, 1)
= TWλ3/2 + (1/TW)(λ8/(2

√
3) − λ15/

√
6) is a convenient

4 × 4 diagonal matrix, acting both of them on the rep-
resentation 4 of SU(4)L. Notice that Jµ(Z) is just the
generalization of the neutral current present in the SM.
This allows us to identify Zµ as the neutral gauge boson
of the SM, which is consistent with (3) and (4).

The couplings of the mass eigenstates Zµ
1 and Zµ

2 are
given by

HNC =
g

2CW

2∑
i=1

Zµ
i

∑
f

{
f̄γµ [aiL(f)(1 − γ5)

+aiR(f)(1 + γ5)] f
}

=
g

2CW

2∑
i=1

Zµ
i

∑
f

{
f̄γµ [g(f)iV − g(f)iAγ5] f

}
,

where

a1L(f) = cos θ(T4f − qfS2
W)

+
g′ sin θCW

g
(T ′

4f − qfTW) ,

a1R(f) = −qfSW

(
cos θSW +

g′ sin θ

g

)
,

a2L(f) = − sin θ(T4f − qfS2
W)

+
g′ cos θCW

g
(T ′

4f − qfTW) ,

a2R(f) = qfSW

(
sin θSW − g′ cos θ

g

)
, (7)

and

g(f)1V = cos θ(T4f − 2S2
Wqf )

+
g′ sin θ

g
(T ′

4fCW − 2qfSW) ,

g(f)2V = − sin θ(T4f − 2S2
Wqf )

+
g′ cos θ

g
(T ′

4fCW − 2qfSW) ,

g(f)1A = cos θT4f +
g′ sin θ

g
T ′

4fCW ,

g(f)2A = − sin θT4f +
g′ cos θ

g
T ′

4fCW. (8)

The values of giV , giA with i = 1, 2 are listed in Tables 2
and 3.

Table 2. The Zµ
1 −→ f̄f couplings

f g(f)1V g(f)1A

u1,2,3 cos θ
(

1
2 − 4S2

W
3

)
− 5 sin θ

6(C2W)1/2 S2
W

1
2 cos θ + sin θ

2(C2W)1/2 S2
W

d1,2,3

(
− 1

2 + 2S2
W
3

)
cos θ + sin θ

6(C2W)1/2 S2
W − 1

2 cos θ − sin θ

2(C2W)1/2 S2
W

D1,2,3
2S2

W
3 cos θ + sin θ

2(C2W)1/2

(
7S2

W
3 − 1

)
− sin θ

2(C2W)1/2 C2
W

U1,2,3 − 4S2
W
3 cos θ − sin θ

2(C2W)1/2

(
11S2

W
3 − 1

)
sin θ

2(C2W)1/2 C2
W

e−
1,2,3 cos θ

(− 1
2 + 2S2

W
)

+ 5 sin θ

2(C2W)1/2 S2
W − cos θ

2 − sin θ

2(C2W)1/2 S2
W

ν1,2,3
1
2 cos θ + sin θ

2(C2W)1/2 S2
W

1
2 cos θ + sin θ

2(C2W)1/2 S2
W

N0
1,2,3

sin θ

2(C2W)1/2 C2
W

sin θ

2(C2W)1/2 C2
W

E−
1,2,3 2S2

W cos θ + sin θ

(C2W)1/2

(
2 − 5

2 C2
W

) − sin θ

2(C2W)1/2 C2
W
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Table 3. The Zµ
2 −→ f̄f couplings

f g(f)2V g(f)2A

u1,2,3 − sin θ
(

1
2 − 4S2

W
3

)
− 5 cos θ

6(C2W)1/2 S2
W − 1

2 sin θ + cos θ

2(C2W)1/2 S2
W

d1,2,3

(
1
2 − 2S2

W
3

)
sin θ + cos θ

6(C2W)1/2 S2
W

1
2 sin θ − cos θ

2(C2W)1/2 S2
W

D1,2,3 − 2S2
W
3 sin θ + cos θ

2(C2W)1/2

(
7S2

W
3 − 1

)
− cos θ

2(C2W)1/2 C2
W

U1,2,3
4S2

W
3 sin θ − cos θ

2(C2W)1/2

(
11S2

W
3 − 1

)
cos θ

2(C2W)1/2 C2
W

e−
1,2,3 sin θ

( 1
2 − 2S2

W
)

+ 5 cos θ

2(C2W)1/2 S2
W

sin θ
2 − cos θ

2(C2W)1/2 S2
W

ν1,2,3 − 1
2 sin θ + cos θ

2(C2W)1/2 S2
W − 1

2 sin θ + cos θ

2(C2W)1/2 S2
W

N0
1,2,3

cos θ

2(C2W)1/2 C2
W

cos θ

2(C2W)1/2 C2
W

E−
1,2,3 −2S2

W sin θ + cos θ

(C2W)1/2

(
2 − 5

2 C2
W

) − cos θ

2(C2W)1/2 C2
W

As we can see, in the limit θ = 0 the couplings of Zµ
1

to the ordinary leptons and quarks are the same as in the
SM; due to this we can test the new physics beyond the
SM predicted by this particular model.

5 Fermion masses

The Higgs scalars introduced in Sect. 3 break the sym-
metry in an appropriate way. Now, in order to generate
both a simple mass splitting between ordinary and exotic
fermions and a consistent mass spectrum, we introduce an
anomaly-free discrete Z2 symmetry [6], with the following
assignments of Z2 charge q:

q(QaL, uc
aL, dc

aL, LaL, ec
aL, φ1, φ3) = 0,

q(U c
aL, Dc

aL, Ec
aL, φ2, φ4) = 1. (9)

Notice that ordinary fermions are not affected by this dis-
crete symmetry.

The gauge invariance and the Z2 symmetry allow for
the following Yukawa lagrangians.
(1) For quarks:

LQ
Y =

3∑
j=2

QT
aLC

{
φ∗

3

3∑
α=1

hu
jαuc

αL + φ∗
4

3∑
α=1

hU
jαU c

αL

+ φ1

3∑
α=1

hd
jαdc

αL + φ2

3∑
α=1

hD
jαDc

αL

}

+QT
1LC

{
φ∗

1

3∑
α=1

hu
1αuc

αL + φ∗
2

3∑
α=1

hU
1αU c

αL

+ φ3

3∑
α=1

hd
1αdc

αL + φ4

3∑
α=1

hD
1αDc

αL

}
+ h.c.,

where the h′s are Yukawa couplings and C is the charge
conjugate operator.
(2) For charged leptons:

Ll
Y =

3∑
α=1

3∑
β=1

LT
αLC

{
φ3h

e
αβe+

βL + φ4h
E
αβE+

βL

}
+ h.c.

The lagrangian LQ
Y produces for up- and down-type quarks,

in the basis (u1, u2, u3, U1, U2, U3) and (d1, d2, d3, D1,
D2, D3) respectively, 6 × 6 block diagonal mass matrices
of the form

MuU =

(
Mu(3×3) 0

0 MU(3×3)

)
,

where

Mu =


hu

11v hu
21v

′ hu
31v

′

hu
12v hu

22v
′ hu

32v
′

hu
13v hu

23v
′ hu

33v
′


 ,

MU =


hU

11V hU
21V

′ hU
31V

′

hU
12V hU

22V
′ hU

32V
′

hU
13V hU

23V
′ hU

33V
′


 ,

and

MdD =

(
Md(3×3) 0

0 MD(3×3)

)
,

where

Md =


hd

11v
′ hd

21v hd
31v

hd
12v

′ hd
22v hd

32v

hd
13v

′ hd
23v hd

33v


 ,

MD =


hD

11V
′ hD

21V hD
31V

hD
12V

′ hD
22V hD

32V

hD
13V

′ hD
23V hD

33V


 .

For the charged leptons the lagrangian Ll
Y , in the ba-

sis (e1, e2, e3, E1, E2, E3), also produces a block diagonal
mass matrix

MeE =

(
Me(3×3) 0

0 ME(3×3)

)
,

where the entries in the submatrices are given by

Me,αβ = he
αβv′ and ME,αβ = hE

αβV ′.
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The former mass matrices exhibit the mass splitting
between ordinary and exotic charged fermions and show
that all the charged fermions in the model acquire masses at
the tree level. Clearly, by a judicious tuning of the Yukawa
couplings and of the mass scales v and v′, a consistent mass
spectrum in the ordinary charged sector can be obtained. In
the exotic charged sector all the particles acquire masses
at the scale V ∼ V ′ 	 174 GeV. Note that in the low
energy limit our model corresponds to a Type III two Higgs
doublet model [7] in which both doublets couple to the
same type of fermions, with the quark and lepton couplings
treated asymmetrically.

Theneutral leptons remainmassless as far asweuse only
the original fields introduced in Sect. 2. But as mentioned
earlier, we may introduce one or more Weyl singlet states
N0

L,b, b = 1, 2, . . . , which may implement the appropriate
neutrino oscillations [8].

6 Constraints on the (Zµ–Z′µ) mixing angle
and the Zµ

2 mass

To bound sin θ and MZ2 we use parameters measured at
the Z pole from CERN e+e− collider (LEP), SLAC Linear
Collider (SLC), and atomic parity violation constraints
which are given in Table 4.

The expression for the partial decay width for Zµ
1 →

ff̄ is

Γ (Zµ
1 → ff̄)

=
NCGFM3

Z1

6π
√

2
ρ

{
3β − β3

2
[g(f)1V ]2 + β3 [g(f)1A]2

}
×(1 + δf )REWRQCD, (10)

where f is an ordinary SM fermion, Zµ
1 is the physical

gauge boson observed at LEP, NC = 1 for leptons while
for quarks NC = 3(1 + αs/π + 1.405α2

s/π2 − 12.77α3
s/π3),

where the 3 is due to color and the factor in parenthe-
ses represents the universal part of the QCD corrections
for massless quarks (for fermion mass effects and further
QCD corrections which are different for vector and axial-
vector partial widths, see [9]); REW is for the electroweak

Table 4. Experimental data and SM values for the parameters

Experimental results SM
ΓZ (GeV) 2.4952 ± 0.0023 2.4966 ± 0.0016
Γ (had) (GeV) 1.7444 ± 0.0020 1.7429 ± 0.0015
Γ (l+l−) (MeV) 83.984 ± 0.086 84.019 ± 0.027
Re 20.804 ± 0.050 20.744 ± 0.018
Rµ 20.785 ± 0.033 20.744 ± 0.018
Rτ 20.764 ± 0.045 20.790 ± 0.018
Rb 0.21664 ± 0.00068 0.21569 ± 0.00016
Rc 0.1729 ± 0.0032 0.17230 ± 0.00007
QCs

W −72.65 ± 0.28 ± 0.34 −73.10 ± 0.03
MZ1 (GeV) 91.1872 ± 0.0021 91.1870 ± 0.0021

corrections which include the leading order QED correc-
tions given by RQED = 1+3α/(4π). RQCD denotes further
QCD corrections (for a comprehensive review, see [10] and
references therein), and β =

√
1 − 4m2

f/M2
Z1

is a kine-
matic factor which can be taken equal to 1 for all the
SM fermions except for the bottom quark. The factor δf

contains the one loop vertex contribution which is negli-
gible for all fermion fields except for the bottom quark,
for which the contribution coming from the top quark at
the one loop vertex radiative correction is parametrized as
δb ≈ 10−2

[−m2
t /(2M2

Z1
) + 1/5

]
[11]. The ρ parameter can

be expanded as ρ = 1+δρ0+δρV where the oblique correc-
tion δρ0 is given by δρ0 ≈ 3GFm2

t /(8π2
√

2), and δρV is the
tree level contribution due to the (Zµ–Z ′

µ) mixing which
can be parametrized as δρV ≈ (M2

Z2
/M2

Z1
− 1) sin2 θ. Fi-

nally, g(f)1V and g(f)1A are the coupling constants of the
physical Zµ

1 field with ordinary fermions which are listed
in Table 2.

In what follows we are going to use the experimental
values [12] MZ1 = 91.188 GeV, mt = 174.3 GeV, αs(mZ) =
0.1192, α(mZ)−1 = 127.938, and sin2 θW = 0.2333. The
experimental values are introduced using the definitions
Rη ≡ Γ (ηη)/Γ (hadrons) for η = e, µ, τ, b, c.

As a first result notice from Table 2, that our model pre-
dicts Re = Rµ = Rτ , in agreement with the experimental
results in Table 4.

The effective weak charge in atomic parity violation,
QW, can be expressed as a function of the number of protons
(Z) and the number of neutrons (N) in the atomic nucleus
in the form

QW = −2 [(2Z + N)c1u + (Z + 2N)c1d] , (11)

where c1q = 2g(e)1Ag(q)1V . The theoretical value for QW
for the cesium atom is given by [13] QW(13355 Cs) = −73.09±
0.04 + ∆QW, where the contribution of new physics is
included in ∆QW, which can be written as [14]

∆QW =
[(

1 + 4
S4

W

1 − 2S2
W

)
Z − N

]
δρV + ∆Q′

W. (12)

The term ∆Q′
W is model dependent and it can be obtained

for our model by using g(e)iA and g(q)iV , i = 1, 2, from
Tables 2 and 3. The value we obtain is

∆Q′
W = (3.75Z + 2.56N) sin θ

+(1.22Z + 0.41N)
M2

Z1

M2
Z2

. (13)

The discrepancy between the SM and the experimental
data for ∆QW is given by [15]

∆QW = Qexp
W − QSM

W = 1.03 ± 0.44, (14)

which is 2.3 σ away from the SM predictions.
Introducing the expressions for Z pole observables in

(10), with ∆QW in terms of new physics in (12) and using
experimental data from LEP, SLC and atomic parity vi-
olation (see Table 4), we do a χ2 fit and we find the best
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Fig. 1. Contour plot displaying the allowed region for θ versus
MZ2 at 95% C.L.

allowed region in the (θ–MZ2) plane at 95% confidence
level (C.L.). In Fig. 1 we display this region, which gives
us the constraints

−0.0032 ≤ θ ≤ 0.0031, 0.67 TeV ≤ MZ2 ≤ 6.1 TeV.
(15)

As we can see, the mass of the new neutral gauge boson
is compatible with the bound obtained in pp̄ collisions at
the Fermilab Tevatron [16].

7 Conclusions

We have presented an anomaly-free model based on the
local gauge group SU(3)c ⊗ SU(4)L ⊗ U(1)X , which does
not contain exotic electric charges. This last constraint
fixes the values b = 1 and c = −2 for the parameters in
the electric charge generator in (1).

We break the gauge symmetry down to SU(3)c⊗U(1)Q

in an appropriate way by using four different Higgs scalars
φi, i = 1, 2, 3, 4, which set two different mass scales: V ∼
V ′ >>

√
v2 + v′2 � 174 GeV, with v ∼ v′. By introducing

an anomaly-free discrete Z2 symmetry we also obtain a
simplemass splitting between exotic and ordinary fermions,
and a consistent mass spectrum both in the quark and in the
lepton sector.Notice also the consistence of ourmodel in the
charged lepton sector where it predicts the correct ratios
Rη, η = e, µ, τ , in the Z decays. This is a characteristic
feature of the two classes of three-family models introduced
in [3].

By using experimental results we obtain a lowest bound
of 0.67 TeV ≤ MZ2 for the mass of an extra neutral gauge
boson Z2, and we find the bound of the mixing angle θ
between the SM neutral current and the Z2 one to be
−0.0032 < θ < 0.0031.

When we compare the numerical results presented in
the previuos section with the results presented in [3], we
find that the mixing angle θ is of the same order of mag-
nitude (∼ 10−3), but for the model considered here the
mass associated with the new neutral current has smaller
lower and upper bounds, with the lower bound just below

the TeV scale, which allows for a possible signal at the
Fermilab Tevatron.

For our analysis we have chosen just one of the two pos-
sible three-family models without exotic electric charges,
characterized by the parameters b = −c/2 = 1 in the elec-
tric charge operator [3]. We believe that the low energy
phenomenology for the other model must produce results
similar to the ones presented in this paper.
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5. W.A. Ponce, J.B. Flórez, L.A. Sánchez, Int. J. Mod. Phys.
A 17, 643 (2002); W.A. Ponce, Y. Giraldo, L.A. Sánchez,
Systematic study of 3-3-1 models, in Proceedings of the
VIII Mexican Workshop of Particles and Fields, Zacate-
cas, Mexico, 2001, edited by J.L. Dı́az-Cruz et al. (AIP
Conf. Proc. Vol. 623, New York, 2002), pp. 341–346 [hep-
ph/0201133]

6. L.M. Krauss, F. Wilczek, Phys. Rev. Lett. 62, 1221 (1989);
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